Hardware implementation of Elliptic Curve Digital Signature Algorithm (ECDSA) on Koblitz Curves

Hardware implementation of Elliptic Curve Digital Signature Algorithm (ECDSA) on Koblitz Curves

ABSTRACT:

This paper presents Elliptic Curve Digital Signature Algorithm (ECDSA) hardware implementation over Koblitz subfield curves with 163-bit key length. We designed ECDSA with the purpose to improve performance and security respectively by using elliptic curve point multiplication on Koblitz curves to compute the public key and a key stream generator “W7” to generate private key. Different blocs of ECDSA are implemented on a reconfigurable hardware platform (Xilinx xc6vlx760-2ff1760). We used the hardware description language VHDL (VHSIC Hardware Description Language) for compartmental validation. The design requires 0.2 ms, 0.8 ms and 0.4 ms with 7 %, 13 % and 5 % of the device resources on Slice LUT for respectively key generation, signature generation and signature verification. The proposed ECDSA implementation is suitable to the applications that need: low-bandwidth communication, low-storage and low-computation environments. In particular our implementation is suitable to smart cards and wireless devices.

PROJECT OUTPUT VIDEO: (Click the below link to see the project output video):

SYSTEM REQUIREMENTS:

HARDWARE REQUIREMENTS: 

  • System : Pentium Dual Core.
  • Hard Disk : 120 GB.
  • Monitor : 15’’ LED
  • Input Devices : Keyboard, Mouse
  • Ram : 1 GB

SOFTWARE REQUIREMENTS: 

  • Operating system : Windows XP/UBUNTU.
  • Implementation : NS2
  • NS2 Version : 2.28
  • Front End : OTCL (Object Oriented Tool Command  Language)
  • Tool : Cygwin (To simulate in Windows OS)

REFERENCE:

Ghanmy Nabil, Khlif Naziha, Fourati Lamia, Kamoun Lotfi, “Hardware implementation of Elliptic Curve Digital Signature Algorithm (ECDSA) on Koblitz Curves”, IEEE 2013.

About the Author