An Energy-Aware and Void-Avoidable Routing Protocol for Underwater Sensor Networks

An Energy-Aware and Void-Avoidable Routing Protocol for Underwater Sensor Networks

ABSTRACT:

Underwater sensor networks (UWSNs) is facing a great challenge in designing a routing protocol with longer network lifetime and higher packet delivery rate (PDR) under the complex underwater environment. In this paper, we propose an energy-aware and void-avoidable routing protocol (EAVARP). EAVARP includes layering phase and data collection phase. During the layering phase, concentric shells are built around sink node, and sensor nodes are distributed on different shells. Sink node performs hierarchical tasks periodically to ensure the validity and real-time of the topology. It makes EAVARP apply to dynamic network environment. During the data collection phase, data packets are forwarded based on different concentric shells through opportunistic directional forwarding strategy (ODFS), even if there are voids. The ODFS takes into account the remaining energy and data transmission of nodes in the same shell, and avoids cyclic transmission, flooding, and voids. The verification and analysis of simulation results show that the effectiveness of our proposed EAVARP in terms of selecting performance matrics in comparison to existing routing protocols.

SYSTEM REQUIREMENTS:

HARDWARE REQUIREMENTS: 

  • System : Pentium Dual Core.
  • Hard Disk : 120 GB.
  • Monitor : 15’’ LED
  • Input Devices : Keyboard, Mouse
  • Ram : 1 GB

SOFTWARE REQUIREMENTS: 

  • Operating system : Windows XP/UBUNTU.
  • Implementation : NS2
  • NS2 Version : 2.28
  • Front End : OTCL (Object Oriented Tool Command  Language)
  • Tool : Cygwin (To simulate in Windows OS)

REFERENCE:

Zhuo Wang, Guangjie Han, Hongde Qin, Suping Zhang, Yancheng Sui, “An Energy-Aware and Void-Avoidable Routing Protocol for Underwater Sensor Networks”, IEEE Access, 2018.

About the Author